Copied to
clipboard

G = C2xC34.C3order 486 = 2·35

Direct product of C2 and C34.C3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C2xC34.C3, C34.10C6, C3.4(C6xHe3), C6.4(C3xHe3), (C3xC6).7He3, C32:C9:14C6, (C3xC18):1C32, (C33xC6).3C3, (C3xC6).21C33, C33.40(C3xC6), C32.7(C2xHe3), (C3xC6):23- 1+2, (C32xC6).27C32, C32.25(C32xC6), (C3x3- 1+2):9C6, (C6x3- 1+2):2C3, C3.4(C6x3- 1+2), C6.4(C3x3- 1+2), C32:4(C2x3- 1+2), (C3xC9):5(C3xC6), (C2xC32:C9):6C3, SmallGroup(486,197)

Series: Derived Chief Lower central Upper central

C1C32 — C2xC34.C3
C1C3C32C33C34C34.C3 — C2xC34.C3
C1C32 — C2xC34.C3
C1C3xC6 — C2xC34.C3

Generators and relations for C2xC34.C3
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=1, f3=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bd-1, cd=dc, ce=ec, fcf-1=ce-1, de=ed, df=fd, ef=fe >

Subgroups: 576 in 252 conjugacy classes, 90 normal (12 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3xC6, C3xC6, C3xC6, C3xC9, 3- 1+2, C33, C33, C33, C3xC18, C2x3- 1+2, C32xC6, C32xC6, C32xC6, C32:C9, C3x3- 1+2, C34, C2xC32:C9, C6x3- 1+2, C33xC6, C34.C3, C2xC34.C3
Quotients: C1, C2, C3, C6, C32, C3xC6, He3, 3- 1+2, C33, C2xHe3, C2x3- 1+2, C32xC6, C3xHe3, C3x3- 1+2, C6xHe3, C6x3- 1+2, C34.C3, C2xC34.C3

Smallest permutation representation of C2xC34.C3
On 54 points
Generators in S54
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 28)(18 29)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 37)(27 38)
(1 38 31)(2 45 35)(3 43 30)(4 41 34)(5 39 29)(6 37 33)(7 44 28)(8 42 32)(9 40 36)(10 48 23)(11 46 27)(12 53 22)(13 51 26)(14 49 21)(15 47 25)(16 54 20)(17 52 24)(18 50 19)
(1 4 7)(2 29 42)(3 40 33)(5 32 45)(6 43 36)(8 35 39)(9 37 30)(10 54 26)(11 14 17)(12 25 50)(13 48 20)(15 19 53)(16 51 23)(18 22 47)(21 24 27)(28 31 34)(38 41 44)(46 49 52)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(1 44 34)(2 45 35)(3 37 36)(4 38 28)(5 39 29)(6 40 30)(7 41 31)(8 42 32)(9 43 33)(10 51 20)(11 52 21)(12 53 22)(13 54 23)(14 46 24)(15 47 25)(16 48 26)(17 49 27)(18 50 19)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,37)(27,38), (1,38,31)(2,45,35)(3,43,30)(4,41,34)(5,39,29)(6,37,33)(7,44,28)(8,42,32)(9,40,36)(10,48,23)(11,46,27)(12,53,22)(13,51,26)(14,49,21)(15,47,25)(16,54,20)(17,52,24)(18,50,19), (1,4,7)(2,29,42)(3,40,33)(5,32,45)(6,43,36)(8,35,39)(9,37,30)(10,54,26)(11,14,17)(12,25,50)(13,48,20)(15,19,53)(16,51,23)(18,22,47)(21,24,27)(28,31,34)(38,41,44)(46,49,52), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,44,34)(2,45,35)(3,37,36)(4,38,28)(5,39,29)(6,40,30)(7,41,31)(8,42,32)(9,43,33)(10,51,20)(11,52,21)(12,53,22)(13,54,23)(14,46,24)(15,47,25)(16,48,26)(17,49,27)(18,50,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,28)(18,29)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,37)(27,38), (1,38,31)(2,45,35)(3,43,30)(4,41,34)(5,39,29)(6,37,33)(7,44,28)(8,42,32)(9,40,36)(10,48,23)(11,46,27)(12,53,22)(13,51,26)(14,49,21)(15,47,25)(16,54,20)(17,52,24)(18,50,19), (1,4,7)(2,29,42)(3,40,33)(5,32,45)(6,43,36)(8,35,39)(9,37,30)(10,54,26)(11,14,17)(12,25,50)(13,48,20)(15,19,53)(16,51,23)(18,22,47)(21,24,27)(28,31,34)(38,41,44)(46,49,52), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,44,34)(2,45,35)(3,37,36)(4,38,28)(5,39,29)(6,40,30)(7,41,31)(8,42,32)(9,43,33)(10,51,20)(11,52,21)(12,53,22)(13,54,23)(14,46,24)(15,47,25)(16,48,26)(17,49,27)(18,50,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,28),(18,29),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,37),(27,38)], [(1,38,31),(2,45,35),(3,43,30),(4,41,34),(5,39,29),(6,37,33),(7,44,28),(8,42,32),(9,40,36),(10,48,23),(11,46,27),(12,53,22),(13,51,26),(14,49,21),(15,47,25),(16,54,20),(17,52,24),(18,50,19)], [(1,4,7),(2,29,42),(3,40,33),(5,32,45),(6,43,36),(8,35,39),(9,37,30),(10,54,26),(11,14,17),(12,25,50),(13,48,20),(15,19,53),(16,51,23),(18,22,47),(21,24,27),(28,31,34),(38,41,44),(46,49,52)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(1,44,34),(2,45,35),(3,37,36),(4,38,28),(5,39,29),(6,40,30),(7,41,31),(8,42,32),(9,43,33),(10,51,20),(11,52,21),(12,53,22),(13,54,23),(14,46,24),(15,47,25),(16,48,26),(17,49,27),(18,50,19)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

102 conjugacy classes

class 1  2 3A···3H3I···3AF6A···6H6I···6AF9A···9R18A···18R
order123···33···36···66···69···918···18
size111···13···31···13···39···99···9

102 irreducible representations

dim111111113333
type++
imageC1C2C3C3C3C6C6C6He33- 1+2C2xHe3C2x3- 1+2
kernelC2xC34.C3C34.C3C2xC32:C9C6x3- 1+2C33xC6C32:C9C3x3- 1+2C34C3xC6C3xC6C32C32
# reps1118621862618618

Matrix representation of C2xC34.C3 in GL6(F19)

1800000
0180000
0018000
0001800
0000180
0000018
,
100000
070000
8111000
0001100
000010
000007
,
700000
010000
71211000
000700
0000110
000001
,
700000
070000
007000
000700
000070
000007
,
1100000
0110000
0011000
000700
000070
000007
,
010000
81210000
1207000
000010
000001
000700

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,8,0,0,0,0,7,1,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7],[7,0,7,0,0,0,0,1,12,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,8,12,0,0,0,1,12,0,0,0,0,0,10,7,0,0,0,0,0,0,0,0,7,0,0,0,1,0,0,0,0,0,0,1,0] >;

C2xC34.C3 in GAP, Magma, Sage, TeX

C_2\times C_3^4.C_3
% in TeX

G:=Group("C2xC3^4.C3");
// GroupNames label

G:=SmallGroup(486,197);
// by ID

G=gap.SmallGroup(486,197);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,548,2169]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=1,f^3=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*d^-1,c*d=d*c,c*e=e*c,f*c*f^-1=c*e^-1,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<